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ABSTRACT
A rich body of prior work has highlighted the existence of communication bottlenecks in synchronous data-parallel
training. To alleviate these bottlenecks, a long line of recent research proposes gradient and model compression
methods. In this work, we evaluate the efficacy of gradient compression methods and compare their scalability with
optimized implementations of synchronous data-parallel SGD across more than 200 realistic distributed setups.
Surprisingly, we observe that only in 6 cases out of more than 200, gradient compression methods provide speedup
over optimized synchronous data-parallel training in the typical data-center setting. We conduct an extensive
investigation to identify the root causes of this phenomenon, and offer a performance model that can be used to
identify the benefits of gradient compression for a variety of system setups. Based on our analysis, we propose a list
of desirable properties that gradient compression methods should satisfy, in order for them to provide meaningful
utility. Our code is available at https://github.com/uw-mad-dash/GradCompressionUtility .

1 INTRODUCTION

Synchronous data parallel stochastic gradient descent (SGD)
is one of the most widely adopted approaches for distributed
learning (Li et al., 2020; Narayanan et al., 2019; Dean et al.,
2012a). One iteration of distributed data parallel SGD com-
prises two main phases: gradient computation and gradient
aggregation. During the computation phase, the gradient of
the model is typically computed using backpropagation.
This is followed by an aggregation phase, where gradi-
ents are synchronously averaged among all participating
nodes (Iandola et al., 2016; Goyal et al., 2017). During this
second phase, for state-of-the-art neural network models,
millions to billions of parameters are communicated among
nodes (Brown et al., 2020), which has been shown to lead
to communication bottlenecks (Dean et al., 2012b; Seide
et al., 2014; Qi et al., 2017; Grubic et al., 2018; Alistarh
et al., 2017).

Alleviating communication bottlenecks in distributed train-
ing has been an active area of research in recent years. A
long line of work has focused on lossy gradient compres-
sion methods to mitigate communication costs. Lossy gra-
dient compression methods typically use techniques such
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as low-precision training (Seide et al., 2014; Alistarh et al.,
2017; Bernstein et al., 2018a; Wen et al., 2017), sparsifica-
tion (Aji & Heafield, 2017; Lin et al., 2017), or low-rank up-
dates (Wang et al., 2018; Vogels et al., 2019), with the com-
mon goal of reduced communication. Although these meth-
ods require significant effort to integrate into deep learning
frameworks and often introduce extra hyper-parameters,
they promise significant reductions in communication, e.g.,
POWERSGD (Vogels et al., 2019) provides a greater than
100× reduction in communication with minimal effect on
accuracy on certain tasks.

Concurrent to the work on gradient compression, a num-
ber of system-level optimizations have been proposed to
speed up distributed data-parallel synchronous SGD (sync-
SGD). Techniques like ring-reduce (Thakur et al., 2005) and
tree-reduce (Sanders et al., 2009) have been implemented
in several high performance communication libraries (e.g.,
NCCL and Gloo) which in turn are tightly integrated into
popular deep learning libraries like PyTorch (Paszke et al.,
2019; Li et al., 2020) and Tensorflow (Abadi et al., 2016).
Both ring-reduce and tree-reduce, are bandwidth efficient
and have a constant, and logarithmic dependence on the
number of nodes, respectively, i.e., the total number of bytes
communicated remains sublinear in the number of machines
used for training. To further reduce the observed overhead
of communication, recent systems overlap the gradient com-
putation and communication phases (Li et al., 2020; Sergeev
& Del Balso, 2018). Figure 1 illustrates how overlapping
the backward pass and the communication phases are im-
plemented. Figure 2 shows the extent to which overlapping
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Figure 1. Illustration of how overlapping can reduce the total iteration time.
(Above) Gradient computation and communication done serially. (Below)
Gradient computation and communication being overlapped, i.e., when the
gradient of a layer is computed, it is communicated right after the gradient of
the previous layer.
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Figure 2. Effect of Overlap: We plot the iteration time
for computation and gradient synchronization for 64
GPUs, both with and without overlap. In case of Resnet-
50 we observe that overlapping reduces iteration time
by upto 46%.

helps improves the scalability of distributed training. For Py-
Torch DDP (Li et al., 2020) with ResNet-50, we observe an
almost 46% reduction in time per iteration when overlapping
communication with the backward pass. These system-level
optimizations are transparent to users, i.e., there is no re-
quirement for additional hyper-parameters and the user need
not worry about accuracy degradation.

Given the above two trends, our objective in this work
is to measure the utility of gradient compression in dis-
tributed training. We empirically compare an off-the-shelf
implementation of syncSGD with three popular gradient
compression methods, implemented using new functional-
ity (PytorchCommHooks, 2021) provided in PyTorch v1.8
for efficiently integrating gradient compression. The com-
pression methods we compare against are, SIGNSGD (Bern-
stein et al., 2018a;b), MSTOP-K (Shi et al., 2021), and
POWERSGD (Vogels et al., 2019). We test these methods
on three popular models, i.e., ResNet-50, ResNet-101 and
BERTBASE (Devlin et al., 2018), and conduct large scale
evaluation with up to 96 GPUs. Overall, we test across
more than 200 experimental settings accounting for differ-
ent models, compression algorithms, compression ratios,
batch sizes, network bandwidths, and etc.

Our Contributions. We observe that due to the afore-
mentioned systems optimizations to speed up syncSGD, at
typical data-center bandwidths, there is limited opportunity
for gradient compression to provide significant performance
improvements. Even for communication heavy models like
BERTBASE (Devlin et al., 2018), the difference between lin-
ear scaling and observed per iteration time for off-the-shelf
(PyTorch DDP) implementations of syncSGD is approxi-
mately 200 milliseconds when using 96 GPUs. For gradient
compression methods to provide speedups they need to per-
form encode-decode and communication within this limited
time-frame. However, we find that existing gradient com-
pression methods have high encode-decode times (upwards
of 50 milliseconds as shown in Table 2) and impose ad-

ditional restrictions on communication protocols, which
significantly limit the speedups from gradient compression.

Further, we observe that gradient compression methods can-
not fully utilize system optimizations like overlapping com-
pression and backward pass. This is because both gradient
compression and backward pass are compute intensive and
compete for GPU resources leading to an overall slowdown.
We also find that when overlapping gradient communication
with the backward pass, large batch sizes further reduce
the communication overhead per iteration. The reason is
that large batch sizes increase the time spent in computa-
tion providing more opportunity to “hide” communication
overheads.

Finally, we also observe that, as reported by previous
works (Vogels et al., 2019; Cho et al.), all-reduce compati-
ble gradient compression methods scale better. For instance,
SIGNSGD, which is not compatible with all-reduce, takes
1042ms for a single iteration of ResNet-101 on 96 GPUs,
while POWERSGD Rank-16, which is compatible with all-
reduce, takes only 470ms, while syncSGD which is also
compatible with all-reduce takes only 262ms.

To understand the regimes in which gradient compression
can be helpful, we develop an analytical performance model
and verify its accuracy. Using the performance model we
investigate how various factors like network bandwidth and
compute availability affect the scalability of distributed train-
ing and discuss scenarios where gradient compression can
be effective. For instance, in Figure 3 with the aid of our per-
formance model we show that at lower bandwidths gradient
compression can provide significant benefits. The markers
in Figure 3 are measurements on actual hardware, show-
ing how close our performance model tracks the observed
values in actual experiments. Our performance model also
suggests that algorithm designers should focus on reducing
the overhead of compression rather than trying to achieve
high compression ratios. This is because at typical data-
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Figure 3. Evaluating effect of network bandwidth (simulated):
Above curve is for Resnet-101, batch size 64 on 64 GPUs. We
observe that at bandwidth lower than 8.2 Gbps, PowerSGD Rank-4
can provide speedups but above that syncSGD performs better.

center bandwidths (> 10Gbps) we only need a compression
ratio of ≈ 4× even for large models like ResNet-101 and
BERTBASE to achieve almost linear scalability. Finally, in
Section 5, we also discuss several scenarios where existing
gradient compression schemes can be effectively used to
improve per iteration times.

We would like to point out that our results are derived from
analyzing per-iteration times and do not account for any loss
in accuracy incurred by gradient compression. In that sense
our analysis is generous to gradient compression methods,
as many lead to some small accuracy loss. This loss typi-
cally requires a larger number of iterations to overcome, or
mitigation techniques with additional computation or mem-
ory footprint (e.g., the error feedback scheme (Seide et al.,
2014; Karimireddy et al., 2019; Stich et al., 2018)).

In summary, our analysis establishes that for synchronous
data-parallel distributed training in the ubiquitous data-
center setting(≈ 10Gbps bandwidth), for popular DNNs, on
commonly used hardware (NVIDIA-V100 GPUs), gradient
compression methods do not provide any of the promised
speedups, once we account for system level optimizations
in syncSGD. However, we also show that there do exist
setups apart from the common data center setups where
gradient compression can provide significant benefits. To
identify regimes where gradient compression can provide
benefits, we develop a performance model that can be used
by both practitioners and researchers to predict performance
at a large scale without the need of performing any real
experiments. Based on our empirical analysis and perfor-
mance model we also provide guidelines for building future
gradient compression algorithms.

2 BACKGROUND AND RELATED WORK

We first provide a brief background of several different
threads of prior work that aim at enabling faster distributed
machine learning.

Table 1. Comparing aggregation schemes: We show how latency
and bandwidth term scale for different aggregation strategies. α
is the latency, β is the inverse of bandwidth, and n is the size of
vector communicated. p is the number of machines

Algorithm Latency Bandwidth

Ring Reduce 2(p− 1)α 2β (p−1)
p n

Tree Reduce 2α log p 2β(log p)n

Parameter Server 2α 2β(p− 1)n

2.1 Gradient Compression

Several lossy gradient compression methods based on quan-
tization (Alistarh et al., 2017; Bernstein et al., 2018a; Karim-
ireddy et al., 2019; Dettmers, 2015; Seide et al., 2014; Wen
et al., 2017; Bernstein et al., 2018b; Yu et al., 2019; Li
et al., 2018; Horvath et al., 2019; Tang et al., 2019; Dryden
et al., 2016; Strom, 2015; Gandikota et al., 2021; Zheng
et al., 2019; Zhang et al., 2017; Wu et al., 2018; Tang et al.,
2018a), sparsification (Stich et al., 2018; Lin et al., 2018;
Aji & Heafield, 2017; Alistarh et al., 2018; Lin et al., 2018;
Shi et al., 2019a;b; Fang et al., 2019; M Abdelmoniem
et al., 2021; Shi et al., 2021; Wangni et al., 2018; Tang
et al., 2018a; Sattler et al., 2019a;b), low rank decompo-
sition (Wang et al., 2018; Vogels et al., 2019; Wang et al.,
2021), and other approaches (Acharya et al., 2019; Suresh
et al., 2017; Ivkin et al., 2019) have been proposed in liter-
ature. Recent surveys (Xu et al., 2020a; Tang et al., 2020)
describe these methods in detail.

In this work, we benchmark several popular gradient com-
pression schemes (Table 2), and we then pick three gradient
compression schemes which have the least compression
overheads and high compression ratios for detailed analysis.
We chose, quantization based SIGNSGD (Bernstein et al.,
2018a;b), low-rank decomposition based POWERSGD (Vo-
gels et al., 2019) and sparsification based MSTOP-K (Shi
et al., 2021). We compare and evaluate these schemes to see
if they provide any benefit over off-the-shelf implementation
of syncSGD, i.e., PyTorch DDP (Li et al., 2020).

2.2 System Advances

Next, we provide a brief overview of several system ad-
vances which have been applied to syncSGD to improve the
performance of distributed training.

All-reduce. In recent years, systems have shifted from
using a parameter server based topology to an all-reduce
topology for gradient synchronization. For example, we
observe that all submissions to DawnBench (Coleman et al.,
2019) use all-reduce for performing distributed training.

Communication costs can be typically modeled using a
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cost model (Sarvotham et al., 2001) where cost of send-
ing/receiving a vector of size n is computed as the sum of
latency and bandwidth requirements. There are several
optimizations (Rabenseifner, 2004; Thakur et al., 2005;
Hoefler et al., 2011; Sanders et al., 2009) for all-reduce
based collectives like ring-reduce (Barnett et al., 1994), tree-
reduce (Sanders et al., 2009), recursive doubling (Ueno &
Yokota, 2019), 2D-Torus (Mikami et al., 2018; Jouppi et al.,
2017), and etc. These optimizations explore the trade-off be-
tween the latency and bandwidth terms. We list latency and
bandwidth terms for a few aggregation strategies in Table 1
for synchronizing a vector of size n among p machines. In
Table 1, α represents the latency term (typically between 0.5
to 1ms in public clouds) and β represents bandwidth term.
We would like to point out that the bandwidth requirement
for ring reduce stays almost constant even with increase in
number of machines p. High performance implementations
like NVIDIA-NCCL (ncc) dynamically chooses between
tree and ring reduce based on several factors like number of
machines, bandwidth, interconnect, communication size to
list a few. In this work for simplicity, we analyze our results
with the communication model of ring-reduce.

Communication and Computation Overlap. Gradients
for DNNs are calculated layerwise, therefore, gradients of
later layers are available before initial layers. Instead of
waiting for the availability of all the gradients, popular deep
learning frameworks (Li et al., 2020; Paszke et al., 2019;
Abadi et al., 2016) start gradient communication when some
of the gradients are available. This leads to overlapping gra-
dient computation with communication, hiding the time
spent in communication. Figure 1 illustrates how overlap
can provide speedups. In Figure 2, we observe that overlap-
ping can provide speedups of almost 46% for ResNet-50.

Bucketing Gradients. Calling the all-reduce collective
per layer can often lead to large overheads. To amortize
the overhead of calling all-reduce, optimized implementa-
tion of syncSGD (Li et al., 2020; Sergeev & Del Balso,
2018) create fixed size buckets. Once the gradients for a
bucket are calculated then all-reduce is called on the entire
bucket. Bucket sizes are typically large (25 MB by default
in PyTorch).

In this paper, we benchmark the runtime of the systems with
the aforementioned optimizations to compare against gra-
dient compression methods on real-world computer vision
and natural language processing tasks.

2.3 Other Related Work

Several works have looked at improving communication ef-
ficiency by use of Gossip based protocols (Lian et al., 2017;
Tang et al., 2018b; Koloskova et al., 2019b;a). Other meth-
ods have looked into improving efficiency of distributed

Table 2. Encode-Decode of gradient compression methods for
ResNet-50 on V100 GPUs.
Type Method Tencode decode(ms) All-Reduce

Sparsification MS-TopK - 1% 103 ✗
DGC - 1% 221 ✗
TopK - 1% 273 ✗
RandomK - 1% 163 ✓

Quantization SignSGD 16 ✗
QSGD-2bit 39 ✗
TernGrad 94 ✗

Low Rank PowerSGD-Rank 4 45 ✓
ATOMO-Rank 4 1586 ✗

training by enabling use of large batch sizes (You et al.,
2019; 2017; Smith et al., 2017; Devarakonda et al., 2017) or
lower precision (Micikevicius et al., 2017) without accuracy
loss. Other works have also looked at different forms of
parallelism (Jia et al., 2018b;a; Huang et al., 2019; Shoeybi
et al., 2019; Narayanan et al., 2019; Rasley et al., 2020)
for speeding up distributed training. MLPerf (Mattson
et al., 2019) and DawnBench (Coleman et al., 2019) are
two well known industry supported efforts to perform peri-
odic benchmarking on training and inference speed at scale.
Our findings about scalability of all-reduce based compres-
sion scheme has also been reported by prior works (Vo-
gels et al., 2019; Cho et al.). A recent survey (Xu et al.,
2020a) quantitatively compares several gradient compres-
sion methods. However unlike our work it does not account
for systems optimization like overlap of communication
and computation. Zhang et al. (2020) study whether net-
work is the bottleneck in distributed training. Unlike (Zhang
et al., 2020) and other listed works, our study focuses on
the utility of gradient compression methods in several dif-
ferent settings and analyzes others aspects beyond network
bandwidth like compute availability, batch size, model size,
system advances etc. Further, our performance model al-
lows to reason about performance of distributed training and
to predict the performance gains without running large scale
experiments.

3 EVALUATING GRADIENT COMPRESSION

In this section, we perform a detailed experimental eval-
uation comparing the scalability of gradient compression
methods with an optimized syncSGD implementation. We
start by analyzing the effects of overlapping gradient com-
pression with gradient computation. Next we run large scale
experiments to study how gradient compression methods
scale across a range of models.

Methodology. We begin by comparing the overhead of
compression methods which have been reported to scale
well. Table 2 shows the time for compression and decom-
pression for nine gradient compression methods using
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ResNet-50 on 64 V100 GPUs. We observe that most gra-
dient compression methods take around 100ms for com-
pressing and decompressing gradients of ResNet-50 on
64 GPUs. However, there are some methods which are
considerably faster, e.g., SIGNSGD takes only 16ms for
encoding-decoding. Among low-rank methods we find
that POWERSGD is around 45× faster than ATOMO (an-
other low rank method) (Wang et al., 2018). Based on this
comparison, we choose the most scalable method in each
category. Among quantization based methods we choose
SIGNSGD (Bernstein et al., 2018a;b) which achieves 32×
compression ratio by only communicating the sign of the
gradient. Among sparsification based methods we choose
MSTOP-K (Shi et al., 2021), a scalable TOP-K method and
among low rank methods we choose POWERSGD, a low
overhead method with compression ratios of around 100×.
For syncSGD we use PyTorch-DDP module (Li et al., 2020).

We would like to point out that we use optimistic com-
pression ratios, e.g., for POWERSGD we use Rank-4, 8,
and 16. Such high compression ratios have been shown to
work (Vogels et al., 2019) for small datasets like CIFAR-10
and WIKITEXT-2 but can lead to accuracy loss for large
datasets (Vogels et al., 2019; Ramesh et al., 2021). While for
MSTOP-K we are again being optimistic and consider drop-
ping 99.9% gradients and assuming that it will have no loss
in accuracy. We chose these since we wanted to consider a
best case scenario for gradient compression methods.

We use ResNet-50 (97MB), ResNet-101 (170MB) and
BERTBASE (418MB) as the models to study given their
disparate communication and computation requirements.
Similar models were used by prior works (Vogels et al.,
2019; Xu et al., 2020b) in gradient compression to com-
pare the performance of gradient compression schemes and
our code can be easily used to benchmark other models as
well. For timing measurements on vision models we use
the ImageNet dataset (Deng et al., 2009) and we fine-tune
the BERTBASE model on Sogou News dataset (Sun et al.,
2019). For the timing measurements, we run 60 iterations
for each setup and discard the first 10. We plot the mean of
the remaining 50. The error bars in the figure correspond to
minimum and maximum values.

Our experiments are conducted over p3.8xlarge instances on
Amazon EC2. Each instance is equipped with 4 V100 GPUs
and provides around 10Gpbs of bandwidth. We scale our
experiments up to 96 GPUs (24 p3.8xlarge instances) and
consider weak scaling, i.e., the number of inputs per worker
is kept constant as the number of workers increase. This
is a commonly used scenario for evaluating the scalability
of deep learning training (Coleman et al., 2019; Narayanan
et al., 2019). Thus, when we refer to a particular batch size,
it is the batch size at each worker.

0 2000 4000 6000 8000

Time (ms)

Resnet-50

Resnet-101

Parameter Server
All-Gather

All-Reduce

Figure 4. Comparison between communication collectives: We
observe that among communication schemes all-reduce performs
significantly better than gather based schemes. Among gather
based schemes, all-gather performs better than Parameter Server.

Using Per Iteration Time as A Metric Instead of Accu-
racy. We consistently use time per iteration as the metric
for evaluation. It is well known from prior works that gra-
dient compression methods can lead to some final model
accuracy loss (Xu et al., 2020b) when used for training.
Our main goal in this paper is to study the scalability of
distributed training and compare per iteration time of sync-
SGD against state-of-the-art gradient compression methods.
Though important, the final model accuracy that the gradient
compression methods achieve is not the main focus of this
paper. The per-iteration speedup is a more critical question
as if there is limited speedup from using gradient com-
pression then there is no incentive to deploy such methods
irrespective of the accuracy. Another reason for not perform-
ing an accuracy based study is that gradient compression
methods often introduce new hyper-parameters while also
requiring modifications to existing hyper-parameters like
the learning rate schedule. It is often non-trivial to find
optimal hyper-parameters which balance compression and
accuracy loss and we plan to study this in future work.

Implementation Details. For performing gradient com-
pression we have two sets of implementations. In the first
set of implementation we overlap compression with the gra-
dient computation (backward pass). In the second set, we
perform gradient compression after gradient computation.
In the first implementation we overlap the compression and
communication with the backward pass using DDP com-
munication hooks (PytorchCommHooks, 2021) which were
introduced recently in PyTorch v1.8. For the non-overlap
version, we observed that compressing gradients incurred
least overhead when gradients are collected into a single
large matrix and compressed, as it reduces the number of
CUDA calls and allows full use of the compute available
on the GPU. Therefore in our non-overlapped implemen-
tation, instead of compressing gradients layer by layer we
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collect all the gradients in a single matrix and then perform
compression.

For implementing compression algorithms we have used the
author provided open source implementations. For POW-
ERSGD without overlap, we used the author provided code
which is JIT-optimized (pytorch jit, 2021). For POWERSGD
with overlap we used the one supported in PyTorch na-
tively (pyt, 2020). For SIGNSGD we used the author pro-
vided C++ library which packs signs into bitmaps, an opera-
tion that is not natively supported by PyTorch. MSTOP-K
is implemented using vector instructions thus avoiding ex-
pensive for loops.

For communication we used highly optimized NVIDIA-
NCCL library. For POWERSGD we used all-reduce collec-
tive since POWERSGD is compatible with all-reduce, while
for SIGNSGD and MSTOP-K we used all-gather collective
operation. We used NCCL all-gather instead of traditional
parameter server architecture, since in our experiments we
observed that all-gather outperforms parameter server in
the data center setting. Figure 4 compares performance of
all-reduce, all-gather and parameter server for 64 GPUs. We
will open-source the code and data post review process.

3.1 Overlapping Compression and Computation

0 100 200 300 400 500 600
Time (ms)

syncSGD

PowerSGD
 Rank-4

MSTopK
K-1%

signSGD

With overlap Without overlap

Figure 5. Overlapping Gradient Compression with Computa-
tion: Overlapping compression leads to requiring more time per
iteration than performing it sequentially, due to resource contention
for compute resources. The results are for 64 GPUs.

We observe that when gradient compression is performed in
parallel with the backward computation it is slower than per-
forming gradient compression after completing backward
pass. Figure 5 depicts this phenomenon on ResNet-50 us-
ing POWERSGD Rank-4, MSTOP-K-1%, and SIGNSGD.
Since both gradient compression and gradient computation
are compute-heavy steps, when performed in parallel they
end up competing for compute resources on the GPU lead-
ing to an overall slow down. On the other hand, syncSGD
only performs all-reduce operation which is communication
heavy with very little compute, thus efficiently utilizing the
communication resources on the GPU without affecting the
backward pass. Since we consistently observe that compres-

Table 3. Encode & Decode times for ResNet-50: Even for a small
network like ResNet-50, where time for backward pass is ≈ 122ms,
gradient compression methods have high overhead
Compression
Method

Compression
Parameter

Compression
Ratio Tencode−decode(ms)

POWERSGD
Rank-4 72× 45
Rank-8 37× 64

Rank-16 19× 130

MSTOP-K
1% 100× 103
.1% 1000× 104

SIGNSGD 32× 16.34

sion schemes perform better when not overlapped, for the
next set of experiments we use non-overlapped versions of
compression. For more detailed analysis of the compression
overlapped, we refer the reader to Appendix A. Using a
GPU profiler, we also verified that gradient compression
does indeed block the progress of gradient computation.
Figure 13 in Appendix shows a snapshot of activity on the
GPU collected using Nsys (Nvidia-Nsight, 2021).

In summary we find:

Takeaway 1 Gradient Compression methods are not good
candidates for overlap with gradient computations on popu-
lar GPUs like V100s since both gradient compression and
computation are compute heavy processes leading to an
overall slowdown.

3.2 Comparing Gradient Compression with
Optimized syncSGD

We next analyse the performance of gradient compression
methods against syncSGD.

PowerSGD. We first study the scalability of PowerSGD
when compared to syncSGD for ResNet-50, ResNet-101 ,
and BERTBASE. We use Rank-4, 8 and 16 as discussed previ-
ously. As shown in Figure 6 we can see that PowerSGD with
Rank 4, 8, and, 16 is slower than syncSGD for ResNet-50
and ResNet-101 with batch size 64 (We investigate varying
batch sizes in Section 3.3). This is primarily because sync-
SGD does not incur any overheads from compression and
is able to overlap communication with computation. On the
other hand, for BERTBASE, which is a much larger model
(490MB), we see that for 96 GPUs, Rank-4 and Rank-8
are faster than syncSGD by around 18.8% and 11.3%
respectively, while Rank-16 still takes longer than syncSGD.

MSTOP-K. Since the MSTOP-K (Shi et al., 2021) oper-
ator is incompatible with all-reduce we use all-gather for
communication. As shown in Figure 7, only in 2 out of 15
different setups we observe a minuscule speedup (around
1.3%) when compared against syncSGD. These speedups
are achieved when using MSTOP-K-0.1%, i.e., when 99.9%
of the entries in the gradient are dropped. Also, due to high
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Figure 6. Scalability of POWERSGD: When compared against an optimized implementation of syncSGD, POWERSGD provides
speedups only in case of BERTBASE when using Rank-4 and Rank-8 above 32 GPUs. In other cases it has a high per iteration time.
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Figure 7. Scalability of MSTOP-K: Comparing MSTOP-K against syncSGD we observe due to lack of compatibility with all-reduce
MSTOP-K performs slower than or comparable to syncSGD . For ResNet-101 and BERT we could not scale TOP-K beyond 16 and 32
GPUs respectively, due to running out of memory as memory requirement increasing linearly with number of machines.

memory requirements for creating buffers for the all-gather
primitive MSTOP-K does not scale beyond 32 GPUs for
ResNet-101 and 16 GPUs for BERT on a V100 GPU.

SIGNSGD. We study SIGNSGD with majority vote,
where 1 bit is sent for each float (32 bit) leading to 32×
compression. Majority vote operation is not associative
thus requiring use of all-gather. Figure 8, shows that despite
SIGNSGD being extremely quick to encode and decode,
due to lack of compatibility with all reduce, communication
time scales linearly. Further, due to overheads in creating
buffers for the all-gather primitive we can not scale
SIGNSGD on BERTBASE beyond 32 GPUs.

Why Does Gradient Compression Not Lead to Signif-
icant Speedups? We identify three reasons for lack of
speedups. First as stated in Section 2.2, compression meth-
ods are poor candidates for overlapping with gradient com-
putation. Meanwhile, syncSGD as shown in Figure 5 is able
to benefit from overlapping communication and backward
pass, which provides it a significant advantage.

The second reason, as depicted in Table 3, is high overhead
of compression. Since syncSGD, because of system ad-

vances has improved scaling, we observe in Figure 10 that
even for large models like BERTBASE, for 96 GPUs the dif-
ference from ideal speedup is around 200ms. This indicates,
that for compression algorithms to be a viable alternative,
they need to be extremely fast and perform compression and
communication in less than 200ms even for very large mod-
els. However, in Table 2 we observe that several gradient
compression take more than 100ms to perform compres-
sion on ResNet-50 (97MB), a much smaller network than
BERTBASE(418 MB), leading to slowdowns.

Third reason for slowdown, as pointed by prior works (Vo-
gels et al., 2019; Cho et al.) and experiments in previous
section, is lack of compatibility with all-reduce. Compres-
sion methods compatible with all-reduce like POWERSGD
are able to scale better. For an operation to be compatible
with all-reduce it must be associative, i.e., the order of
operations should not matter. However, Table 2 shows that
several gradient compression methods are incompatible with
all-reduce. In these cases, to perform gradient aggregation,
the workers need to perform an all-gather operation, leading
to poor scalability as we increase the number of processors.

Takeaway 2 Existing gradient compression methods pro-
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Figure 8. Scalability of SIGNSGD: Due to lack of support for all-reduce and linearly increasing decode time, across all three models,
SIGNSGD performs considerably slower than syncSGD. For BERTBASE we were not able to scale signSGD beyond 32 GPUs because we
ran out of memory on a V100 GPU. This is due to the memory requirement increasing linearly with number of machines.
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Figure 9. Effect of varying batch size: Here we compare POWERSGD against ResNet-101 on different batch sizes. We observe that
large batch sizes provide more opportunity to syncSGD to hide the communication time, meanwhile at small batch sizes due to reduced
computation time this overlap is not possible. Therefore gradient compression methods become more useful at small batch sizes.

vide limited benefits either due to encoding overheads or
due to lack of compatibility with all-reduce across a range
of models.

3.3 Effect of Batch Size on Scalability

For analysing the effect of varying batch sizes, we compare
PowerSGD against syncSGD since it is the most scalable
method we encounter. In Figure 9, for ResNet-101, we find
that the benefits of using PowerSGD with Rank-4 drops as
the batch size increases. For instance, when using 96 GPUs,
PowerSGD Rank-4 provides almost 42.5% speedup when
training using batch size 16. This speedup drops to 25.7%
for batch size 32 and with batch size 64, we observe that
PowerSGD Rank-4 is around 6.3% slower than synSGD.
In general, increasing batch size leads to an increase in the
compute time which in turn provides more opportunity for
syncSGD to overlap computation and communication.

Takeaway 3 Using large batch sizes often provides enough
opportunity for syncSGD to overlap communication with
communication thus reducing the extent of benefits achieved
from using gradient compression.
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Figure 10. Difference between linear scaling and observed per-
formance: We observe that the difference between linear scaling
and syncSGD is less than 200 ms at 10Gpbs. This leaves little op-
portunity for gradient compression methods to provide speedups.

4 IDENTIFYING REGIMES OF HIGH
GRADIENT COMPRESSION UTILITY

In the previous section we looked at the performance of dis-
tributed training and gradient compression of popular mod-
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Figure 11. Verifying performance model for syncSGD: Our
performance model matches the actual performance for all three
models across wide range of GPUs. The median difference be-
tween predictions and actual runtime is 1.8%.

els on existing hardware. Next we try to identify regimes, in
terms of hardware or model characteristics, where gradient
compression can provide significant gains i.e., how will our
above results change if we had 100Gbps bandwidth or an
8× faster GPU. To answer such questions, we develop a per-
formance model that can be used to reason about expected
performance under different setups.

4.1 Performance Model for Distributed Data Parallel.

Based on optimizations listed for syncSGD in (Li et al.,
2020) we build an analytical performance model. We as-
sume the model can be partitioned into k buckets, where the
first k − 1 buckets are of size b and the last bucket is of size
b̂, where b̂ ≤ b. The time observed for backward pass and
gradient synchronization for synSGD becomes:

Tobs ≈ max(γTcomp, (k − 1)× Tcomm(b, p,BW ))+

Tcomm(b̂, p, BW )

where Tobs is the total time observed for backward pass and
synchronization, Tcomp is the compute time for the back-
ward pass on single machine, (k − 1)× Tcomm(b, p,BW )
is the time required to communicate k − 1 gradient buck-
ets of size b across p GPUs at BW bandwidth, and
Tcomm(b̂, p, BW ) is the time to communicate the last
bucket of size b̂, which can not be overlapped with com-
putation. Finally, γ represents the factor of slowdown in
backward pass due to overlap with communication. We
observe γ to between 1.04 to 1.1. In case of syncSGD when
using ring-reduce, Tcomm(b, p,BW ) becomes

Tcomm(b, p,BW ) = 2α×(p−1)+2×b× (p− 1)

p×BW
(1)

where α is the latency coefficient, b is the bucket size, p is
the number of GPUs and BW is the bandwidth available.
The performance model for gradient compression methods
is in Appendix B.

Verifying Performance Model. We empirically verify
our performance model using the same experimental setup
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Figure 12. Required gradient compression for near linear
speedups (simulated): Above figure is for ResNet-101 simulated
for 64 machines. We observe that the required gradient compres-
sion for near linear scaling at 10 Gbps even for quite small batch
sizes is around 4×.

as mention in Section 3. As shown in Figure 11 we observe
that our model very closely tracks the actual performance in
all cases. The median difference between our prediction and
actual runtime is 1.8% and the maximum is 13.7%. More
details on verification and how we measure the values to in-
put into the performance model can be found in Appendix C.

Utility of the Performance Model. The performance
model requires calculation of latency term(α), correction
term(γ), time for backward pass and available bandwidth.
The goal of the performance model is to allow analysis in
the case where hardware is not available, e.g., one can ask a
question: at what bandwidth will a particular gradient com-
pression scheme outperform syncSGD for ResNet-50? This
is not possible to run since our choice of hardware is con-
strained by existing bandwidth options (10Gbps or 25Gbps
on Amazon EC2 etc.). Another benefit of the performance
model is that it characterizes which factors affect training
time and how those factors interact, helping researchers and
developers to reason about performance.

Limitations. Currently, our performance model only sup-
ports the data-parallel setting and is not applicable on other
forms of distributed training like model or pipeline paral-
lelism, i.e., we do not consider cases where the model can
not fit in single GPU memory. Further, we do not account
for asynchronous methods (Dean et al., 2012b; Grishchenko
et al., 2018; Mota et al., 2013), i.e., we assume that gradient
synchronization is required after every iteration.

4.2 Insights from the Performance Model
How Much Should We Compress? Using the perfor-
mance model we investigate how much compression is re-
quired for linear scalability. Figure 12 shows that even at
small batch-sizes for ResNet-101 we need around 4× com-
pression for linear scalability, which is significantly smaller
than what most compression methods offer. Our analysis
shows that for linear scaling we do not need extremely high
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compression ratios. In Appendix D, we show that reduc-
ing encode-decode time even at the expense of decreased
compression ratio helps. As an extreme case, prior work
shows by-passing gradient encoding and decoding steps by
changing the structure of DNN (Wang et al., 2021).

Effect of Network Bandwidth on Gradient Compres-
sion. Figure 3 shows comparison between speedups for
ResNet-101 when using syncSGD and POWERSGD Rank-4
at different network bandwidths. In addition to estimating
time taken with our performance model, we also use the
TC command (tc, 2020) to limit bandwidth on a real cluster,
thereby verifying our performance model (the markers rep-
resent measurements on hardware). The figure shows that
gradient compression is very useful in low bandwidth set-
tings (≤ 8 Gbps). Although low bandwidths are uncommon
in data centers (10 Gbps is minimum with a V100 GPU on
Amazon EC2), this shows that in certain cases like wide-
area learning (Bonawitz et al., 2019) gradient compression
methods can be extremely useful. Several other insights and
analysis from our performance model is in Appendix D.

5 DISCUSSION

In this section we discuss the insights from our study as well
as limitations and applicability of our findings.

Limitations Due to Hardware Changes. We have per-
formed all our experiments in the standard data-center set-
ting on AWS using p3.8xlarge instances which provide band-
width of around 10Gbps. For training, we used NVIDIA
V100 GPUs which are extensively used for DNN training.
We believe that such a setup is very close to the typical
setup used for distributed DNN training. All our insights
are specific to this ubiquitous setup. However, if training
moves to hardware with very different compute capabilities
then our findings will also change.

Additionally, if gradient computation methods are designed
such that they can be offloaded to auxiliary hardware like
network interface cards or switches then potentially gradient
compression can be overlapped with backward pass leading
to better scalability than currently observed results. Simi-
larly, if custom hardware is designed to perform gradient
compression, that will also negate our findings on the utility
of gradient compression. However, we believe that our anal-
ysis can guide hardware designers to understand additional
functionalities which will be needed if they want to add
support for gradient compression algorithms.

Gradient Compression for Different Parallelisation
Strategies. In our work we have only analysed the ex-
tremely popular data parallel setting.However, recently
POWERSGD was used by (Ramesh et al., 2021) to train
DALL-E a 12 billion parameter version of GPT-3 for gener-
ating images from text descriptions. Ramesh et al. (2021)

used POWERSGD to reduce communications among nodes
for scalability. But due to huge size of the model, Ramesh
et al. (2021) used a hybrid-parallel scheme, which combined
data-parallelism and model-parallelism. In this approach
the model was split in model-parallel mode within a ma-
chine and was using data-parallel mode to sync with other
machines. This hybrid parallelism allowed Ramesh et al.
(2021) to efficiently overlap encode/decode and communi-
cation operations as all other GPUs except one will be idle
while doing backward pass on a given machine. However as
we show in Section 3.1 this type of overlap is not possible
in data-parallel setting. Analysing such hybrid-schemes for
extremely large models is an avenue for future work.

Effect of Low Level Optimizations. For compression
algorithms, we have used the best publicly available imple-
mentation of all the compression methods. For communica-
tion, we use NVIDIA-NCCL library which is specifically
designed for NVIDIA GPUs and has been shown to achieve
the best performance among communication libraries. How-
ever, it is possible that even better implementations of these
compression algorithms can be created which may yield
better results and may change the findings. We believe this
is unlikely because existing algorithms like SIGNSGD and
POWERSGD already use heavily optimized CUDA primi-
tives.

Enhanced Utility of Gradient Compression for Low
Compute Density Workloads. Highly scalable syncSGD
implementations (Li et al., 2020; Sergeev & Del Balso,
2018) rely on the overlap between communication and back-
ward pass to provide high speedup. But if the compute
density decreases then the amount of overlap possible will
reduce, making it impossible to “hide” communication. An
example of reduced compute density is small batch-size and
we find gradient compression does indeed provide speedups
for small batches(Section 3.3). However, recent work has fo-
cused on increasing the batch size (memory permitting) (De-
varakonda et al., 2017; Yao et al., 2018) and designing
algorithms to improve accuracy when using large batches.

6 CONCLUSION

In this work, we study several gradient compression meth-
ods used to accelerate distributed ML training. We dis-
cover that existing gradient compression methods provide
marginal speedups in a datacenter setup due to the overheads
in compression. We develop a performance model that can
help algorithm designers build scalable gradient compres-
sion algorithms. Our performance model also allows users
to conduct what-if analyses and determine how much com-
pression they need given a hardware setup. We believe this
analysis provides the community clarity on the desirable
properties for gradient compression and will lead to methods
that can provide improved scalability in the future.
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A OVERLAP GRADIENT COMPRESSION
WITH COMPUTATION

In this section, we include additional results in which
we consider overlapping gradient compression with gra-
dient computation. POWERSGD was recently implemented
with overlap in PyTorch v1.8 (pyt, 2020). For integrating
SIGNSGD and MSTOP-K we used the recently introduced
DDP Communication hook (PytorchCommHooks, 2021)
interface. The DDP Communication hook interface was
recently added in PyTorch v1.8. Comparing Figure 6 with
Figure 14, Figure 7 with Figure 15 and Figure 8 with Fig-
ure 16 we observe that overlapping gradient compression
with gradient computation is slower compared to performing
gradient compression post gradient computation. Therefore
to consider the best case for gradient compression, in the
main paper we only consider gradient compression being
performed post backward pass. As discussed in the main
paper this phenomenon can be primarily attributed to both
compression and backward pass being compute intensive
and thus competing for the same resources on the GPU,
leading to an overall slowdown. Using Nsys (Nvidia-Nsight,
2021) we also verify that indeed our implementation is try-
ing to overlap gradient compression with computation by
running backward pass and gradient compression in sepa-
rate CUDA streams. Figure 13 shows a snapshot of this.
In Figure 13 we also observe that gradient compression
stream blocks gradient computation stream due to compute
intensive nature of gradient compression which is able to
completely utilize the GPU.

B PERFORMANCE MODEL FOR GRADIENT
COMPRESSION

In Section 4.1 we described our performance model for
syncSGD with system optimizations. Here we describe our
performance model for gradient compression.

From the perspective of performance, the scalability of a
compression method depends on two main factors i) can the
aggregation be performed using all-reduce ii) the encode
decode time for compression. Table 2 classifies a number
of gradient compression methods based on compatibility
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Backwards pass stream

Encode stream

Figure 13. Verification of gradient compression running in separate CUDA stream: Using Nsys (Nvidia-Nsight, 2021) we verified
that indeed our implementation which overlaps gradient computation and compression, tries to performs compression in separate CUDA
stream. However, we observe that when encoding is being performed it completely blocks the backward pass stream. This due to the
compute intensive nature of gradient compression which uses all the available compute units on the GPU.
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Figure 14. Scalability of PowerSGD with overlap: When POWERSGD is overlapped with backward we observe that it does not provide
speedups in any of our experiments when compared against an optimized implementation of syncSGD.

with all-reduce. Ideally for high scalability we would like
the method to be both all-reduce compatible and have low
encode-decode time.

In Section 3.1 and Appendix A we have shown that the best
case from the perspective of runtime will be performing
gradient compression post backward pass. Based on this
finding, a generic performance model will be

Tobs ≈ Tcomp + Tencode−decode + Tcomm(b̂, p, BW )

where Tcomp is the time required for gradient computa-
tion, Tencode−decode is the overhead of compressing and
decompressing the gradients. Since after compression gra-
dients are extremely small they are then sent in a single
bucket, Tcomm(b̂, p, BW ) is the time required to communi-
cate compressed gradients of size b̂, across p GPUs at BW
bandwidth. We now derive specific performance models for
studying gradient compression schemes from the generic
model stated above.

PowerSGD. POWERSGD requires sending two low rank
matrices, P and Q. But Tencode−decode as stated in Table 3
has high overhead. The performance model becomes-

Tobs ≈Tcomp + Tencode−decode+

Tcomm(P, p,BW ) + Tcomm(Q, p,BW )

Where p is the number of GPUs, and Tcomm is calculated
using Equation 1.

MSTOP-K. For MSTOP-K the output of compression
is the TOP-K% gradient values (ĝ) and their corresponding
indices (̂i). Further, TOP-K operator is not compatible with
all-reduce, therefore we need to use all-gather collective,
thus Tcomm will be calculated from

Tcomm(ĝ, p, BW ) = 2α+
ĝ × (p− 1)

BW

where ĝ is the gradient size, p is the number of GPUs. A
similar calculation applies to î the indices. Overall the
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Figure 15. Scalability of MSTOP-K with overlap: Comparing the time taken for gradient computation and aggregation for MSTOP-K
(with overlap) with syncSGD. For BERT and ResNet-101 we could not scale MSTOP-K beyond 16 and 32 GPUs respectively, due to
memory requirement of MSTOP-K increasing linearly with number of machines and running out of available memory.
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Figure 16. Scalability of signSGD with overlap: We compare the time taken for gradient computation and aggregation for signSGD with
syncSGD. For BERT we could not scale signSGD beyond 32 GPUs, because the memory requirement of signSGD increase linearly with
number of machines and for BERT we ran out available memory.

performance model becomes.

Tobs ≈ Tcomp + Tencode−decode + Tcomm(ĝ, p, BW )

+Tcomm(̂i, p, BW )

SIGNSGD. SignSGD, only sends 1bit for each 32bit
leading to around 32× gradient compression. However
SignSGD is not compatible with all-reduce leading to a
performance model as follows:

Tobs ≈ Tcomp + Tencode−decode + Tcomm(ĝ, p, BW )

where Tcomm(ĝ, p, BW ) = ĝ×(p−1)
BW and ĝ = g

32 . For
SIGNSGD we only consider all-gather collective, i.e., each
node receives the encoded gradients from all other nodes.

C VERIFICATION PERFORMANCE MODEL

In this section we describe how we verify our performance
model and calculate the values required for using our ana-

lytical performance model.

In case of syncSGD the backward pass and gradient synchro-
nization are overlapped, therefore it is not easy to segregate
the time spent in communication and time spent in compu-
tation. First we calculate just the time taken for backward
pass on a single machine this forms Tcomp in the perfor-
mance model. To calculate γ, we run distributed training
but with Nsight Systems profiling switched on. From Nsight
systems we track kernels launched during backward pass
and find how long does it takes for the compute phase of
backward pass. The ratio between the two allows us to
calculate γ. For all our experiments we disable NCCL
auto tuning and forced it to use ring algorithm by set-
ting the NCCL TREE THRESHOLD=0. To calculate
Tencode−decode we calculate the time required for compres-
sion and decompression for each iteration and plug it in the
model. Before each run we calculate available bandwidth
between each pair of instances using iperf3 (ipe) and take
the minimum of these values as BW . For calculating α
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Figure 17. Evaluating our performance model on actual hardware: We evaluate our performance model on AWS on p3.8xlarge
instance. We observe that our performance model quite closely tracks the actual performance of both syncSGD implementation of
PyTorch as well as performance of gradient compression methods. Before all experiments we calculated the available pairwise bandwidth
using iperf3(ipe), and calculate the latency term by performing all reduce based on the vector of size equivalent to number of machines.
For BERT we could not scale signSGD beyond 32 GPUs, because signSGD’s memory requirement increase linearly with number of
machines and for BERT we ran out available memory.

we perform ring-reduce on a small tensor and divide the
obtained value by (p− 1) where p is the number of GPUs.

Figure 17 shows that our model closely tracks the exper-
iments performed on real hardware. In case of syncSGD
and POWERSGD (schemes using all-reduce) we observe the
maximum deviation from actual experiments to be around
9.1%. In case of SIGNSGD the maximum deviation ob-
served is 19.1%, the reason for high difference for SIGNSGD
is that all-gather collective has an all to all pattern which
causes degraded network performance due to widely re-
ported issues of incast (Chen et al., 2009; Alizadeh et al.,
2010). In future a utility which can simulate the traffic pat-
tern of all-gather collective and provide us more accurate
measurements of the effective bandwidth available during
all-to-all communications can be helpful in providing better
estimates of per iteration time.

Using the Performance Model. To use the performance
model, similar to verification we calculate Tcomp, the time
for backward pass on a single machine for a given batch
size and model. It depends on hardware, computation re-
quirements of the model and the batch size used for train-
ing. For gradient compression methods we also calculate
Tencode−decode for SIGNSGD, TOP-K and POWERSGD.
We only include the computation time and disregard the
time for extracting gradients, or copying back the decom-
pressed gradients to the model. As these timings can be
improved with tighter integration with the training frame-
works. For this calculation we run each experiment 60 times
and discard the first 10, we assign the mean of remaining 50
as Tencode−decode. Table 3 shows the times for Tcomp and
Tencode−decode for ResNet-50 when using V100 GPU on
AWS. Thus without running large scale experiments, practi-
tioners and researchers can utilize our performance model
to predict speedups when performing distributed training

with and without using gradient compression.

D WHAT-IF ANALYSIS

Our performance model also allows us to consider several
what-if scenarios. To understand how and where gradient
compression methods will be useful, we can vary several
factors like compute availability, encode-decode time, net-
work bandwidth etc. Based on our results in Section 3.2
which show that POWERSGD Rank-4 is the most scalable
compression scheme, we use PowerSGD with Rank-4 as the
baseline for these what-if analyses.

Required Compression for linear scaling. Existing gra-
dient compression methods provide massive amount of com-
pression which often leads to poor accuracy. Using our
performance model we study the amount of gradient com-
pression required for linear scaling. Figure 18 shows that
in most common models at 10 Gbps we do not need com-
pression greater than 4×. This shows that focus of gradient
compression should be to reduce the overheads of compres-
sion rather than providing very high compression rates.

Effect of Network Bandwidth In Figure 19 we vary net-
work bandwidth available from 1Gbps to 30Gbps and see
how this changes the speedup offered by PowerSGD. We
see that, for example, in the case of Resnet-50, PowerSGD
offers considerable speedup at low network bandwidths (1-7
Gbps) but becomes slower than synchronous SGD when
bandwidth available becomes > 9Gbps. This is due to
the fact that syncSGD benefits more from availability of
higher bandwidth since it communicates significantly more
while PowerSGD is still limited by extra time spent in the
encode-decode step. For BERT which is a communication
heavy network, PowerSGD becomes slower than syncSGD
at around 15Gbps. In Figure 19 the markers represent values
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Figure 18. Required gradient compression for near optimal speedups (simulated): We observe that the required gradient compression
for near optimal scaling is quite small. At 10 Gbps even for quite small batch sizes we need less than 4× gradient compression, which is
quite small compared to what popular gradient compression methods.
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(c) BERT: Batch Size 12

Figure 19. Evaluating effect of network bandwidth on training (simulated): We vary bandwidth availability and analyse the perfor-
mance of synchronous SGD vs PowerSGD Rank 4. We observe that as bandwidth increase significantly it helps synchronous SGD since it
has a larger communication overhead. Moreover we observe the PowerSGD provides massive gains at extremely low bandwidth (1Gbps)
but as bandwidth scales we see PowerSGD gets bounded by compute availability. The markers are values from actual experiments, this
also shows how close our performance model is to actual measurement.

from actual experiments. To perform these experiments we
used the tc command in linux to modify the available band-
width. For experiments with bandwidth less than 10Gbps
we used p3.8xlarge instances which provide a maximum
of 10Gbps bandwidth. And for 20 Gbps experiment we
used p3.16xlarge instance which provides 25 Gbps band-
width. The markers are extremely close to the values from
our analytical performance model thus verifying that our
performance model can indeed be useful in several settings.

Effect of faster compute. Next we analyze how the effect
of gradient compression changes when newer hardware with
higher compute capabilities arrive in future.

In Figure 20, we plot the effect of compute capabilities im-
proving by up to 4×, while network bandwidth remains con-
stant at 10 Gbps. We can see that for Resnet-50, PowerSGD
with Rank-4 can provide 1.75x speedup if the compute be-
comes around 3.5x faster.

There are two reasons for this, (i) As compute gets faster,
the encode-decode time also reduces by the same factor, (ii)
with a faster backward pass, there is less opportunity for syn-
chronous SGD to overlap computation with communication,
making it communication bound.

Tradeoff between encode-decode time and compression
ratio. Finally, we explore the tradeoff between the ef-
fect of reducing encode-decode time, while simultaneously
decreasing the compression ratios by similar proportions.
For this we consider a hypothetical gradient compression
scheme in which if we decrease encode-decode time by a
factor k the size of gradients communicated increases by lk.
For example, if say k = 2 and l = 2 then a 2x decrease in
encode-decode time would be accompanied by a 4x increase
in size of gradients. This setup is to study what would hap-
pen if we had compression schemes that offered a variety
of trade-off points. We vary k from 1 to 4 in increments of
1 and try 1,2 and 3 as values of l. Using PowerSGD with
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Figure 20. Evaluating effect of compute speedup on training time (simulated):Assuming network capacity remains at 10Gigabit but
compute capabilities go up, we observe in that case PowerSGD will end up providing significant benefit, meanwhile synchronous SGD
will end up being communication bound and will not be able to utilize increased compute. Showing that if compute capabilities increase
drastically but network bandwidth remains stagnant, gradient compression methods will become useful.
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Figure 21. Varying encoding-decoding time and compression (simulated) : We observe that reducing encode-decode time even if it
leads to reduced gradient compression is very useful and can make methods like PowerSGD more viable.

Rank-4 as the baseline, we see in Figure 21 that any reduc-
tion in encode-decode time even at the expense of increased
communication helps.
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E ARTIFACT APPENDIX

E.1 Abstract:

We provide the artifacts to reproduce all the results in the pa-
per. For all our experiments we use PyTorch v1.8.1+cu111,
the code uses Python 3.8 . We have used AWS p3.8xlarge
instances to run experiments. For easy reproducibility we
are also providing a public AMI - ami-0eea3ad7fabaa0125

E.2 Artifact check-list (meta-information)
• Algorithm: All the gradient compression algorithms are

implemented in gradient reducers.py

• Compilation: The code is in Python, therefore requiring no
compilation. However for replicating signSGD one will need
to install the bit2byte extension (bit, 2020). The provided
AMI has the extension pre-installed.

• Data set: We use two datasets for evaluation Imagenet and
Sogou News datasets.

• Run-time environment: For all our experiments we ran
Ubuntu Linux, with Cuda 11.1 .

• Hardware: We used p3.8xlarge instances on AWS for all
our experiments. We run scaling from 2 p3.8xlarge to upto
24 p3.8xlarge.

• Metrics: For all the experiments we collect per-iteration
time for training.

• Output: Our existing code writes all files locally on disk as
well as to AWS S3

• How much disk space required (approximately)?: Around
1 Terabyte of disk space.

• How much time is needed to prepare workflow (approx-
imately)?: To get data and setup all the experiments one
would ideally require 2-3 hrs. If the evaluators have access
to AWS, the authors have also provided a public AMI - ami-
0eea3ad7fabaa0125 which has the datasets an dependencies
pre-installed.

• How much time is needed to complete experiments (ap-
proximately)?: Ideally it should take less than an hour to
run and get all the numbers.

• Publicly available?: Yes. Apart from Github we are have
also archived our code on Figshare - https://figshare.
com/s/f0c3e00293b0690f76c1

• Data licenses (if publicly available)?: We use Imagenet and
Sogou News datasets which come with their own licenses.

E.3 Description

We provide the code to reproduce all the experiments in this pa-
per. The authors are providing a github repository with all the
documentation to run the experiments.

E.3.1 How delivered

All our code is present on the github reposi-
tory: https://github.com/uw-mad-dash/
GradCompressionUtility. For easy setup on AWS
we also provide a public ami - ami-0eea3ad7fabaa0125, which
can be used to launch large scale experiments.

E.3.2 Hardware dependencies

For all our experiments we used p3.8xlarge instances on AWS. We
run scaling experiments from 2 p3.8xlarge instances to upto 24
p3.8xlarge. Atleast 2 p3.8xlarge instances are needed to replicate
a portion of our results.

E.3.3 Software dependencies

We need standard Pytorch 1.8.1+cu111 installed with dependencies
like Numpy. For easy installation and setup we have also provided
a public ami - ami-0eea3ad7fabaa0125.

E.3.4 Data sets

For all our experiments we used Imagenet and Sogou News dataset.
The instructions to download those are available in the Readme.
All the datasets are already available in the public AMI.

E.4 Experiment workflow

We have provided a detailed Readme which provides bash scripts
to automatically run the experiments.

E.5 Experiment customization

The experiment can be customized by trying on different hardware
setups. One example for this will be to run these experiments on
slower GPUs but with faster interconnects. Another option would
be trying a smaller batch size, which will increase the number of
synchronizations.

https://figshare.com/s/f0c3e00293b0690f76c1
https://figshare.com/s/f0c3e00293b0690f76c1
https://github.com/uw-mad-dash/GradCompressionUtility
https://github.com/uw-mad-dash/GradCompressionUtility

